Analysis of the biomechanical and biochemical properties of two rat tendons with aging

Authors

DOI:

https://doi.org/10.24933/rep.v9i1.480

Keywords:

collagen, anatomical variation, connective tissue, glycosaminoglycans

Abstract

Biological changes in connective tissue with aging affect tendon physiology. The aim of this study was to analyze the viscoelastic properties, structural organization and chemical composition of connective tissue present in two tendons (CT and DDFT) of male rats at different ages, obtained from different anatomical sites and subjected to different functional demands. The main findings of this study are related to the changes in the mechanical properties of the tendons (CT and DDFT) with maturity and that these changes are significantly more intense in DDFT than in CT. The swelling properties of CT and DDFT in acetic acid and water showed significant changes with aging and differed between tendons. The hydroxyproline and glycosaminoglycan content of tendons decreased with aging in both tendons, but significant differences could be observed between them in the two solvents. The study also shows that collagen fibrils in young tendons are of small diameter. In older individuals, collagen fibrils are larger in diameter. Finally, observations on the type of glycosaminoglycan showed that the concentration of dermatan sulfate proteoglycan was similar in CT during aging and is higher at maturity in DDFT. The properties of connective tissue undergo changes during aging and these depend on the demands to which the structures are subjected with aging.

Downloads

Download data is not yet available.

Author Biography

Marcelo Augusto Marretto Esquisatto, Centro Universitário da Fundação Hermínio Ometto FHO

Biomédico, Mestre e Doutor em Biologia Celular e Estrutural.

References

ALEXANDER, R.M.; MALOIY, G.M.O.; KER, R.F.; JAYES, A.S.; WARUUI, C.N. The role of tendon elasticity in the locomotion of the camel (Camelus dromedaries). Journal of Zoology (Londres), v. 198, n. 3, p. 293-313, 1982. DOI: https://doi.org/10.1111/j.1469-7998.1982.tb02077.x

BENEVIDES, G.P.; PIMENTEL, E.R.; TOYAMA, M. H.; NOVELLO, J. C.; MARANGONI, S.; GOMES, L. Biochemical and Biomechanical Analysis of Tendons of Caged and Penned Chickens. Connective Tissue Research, v.45, n.6, p. 206–215, 2004. DOI: https://doi.org/10.1080/03008200490522997

BENNETT, M.B.; KER, R.F.; DIMERY, N.J.; ALEXANDER, R.M. Mechanical properties of various mammalian tendons. Journal of Zoology (Londres), v. 209, n. 9, p. 537-548, 1986. DOI: https://doi.org/10.1111/j.1469-7998.1986.tb03609.x

BIRCH, H.L.; PEFFERS, M.J.; CLEGG, P.D. Influence of Ageing on Tendon Homeostasis. Advances in Experimental Medicine and Biology, v. 920, n. 3, p. 247-260, 2016. DOI: https://doi.org/10.1007/978-3-319-33943-6_24

BLANTON, P.L.; BIGG, N.L. Ultimate tensile strength of fetal and adult human tendons. Journal of Biomechanics, v. 3, n. 2, p. 181-189, 1970. DOI: https://doi.org/10.1016/0021-9290(70)90005-9

DELABASTITA, T.; BOGAERTS, S.; VANWANSEELE, B. Age-Related Changes in Achilles Tendon Stiffness and Impact on Functional Activities: A Systematic Review and Meta-Analysis. Journal of Aging and Physical Activity, v. 27, n. 2, p. 116–127, 2018. DOI: https://doi.org/10.1123/japa.2017-0359

DIETRICH, C.P.; DIETRICH, S.M.C. Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Analytical Biochemistry, v. 70, n. 4, p. 645-647, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90496-6

FARNDALE, R.W.; BUTTLE, D.J.; BARRET, A.J. Improved quantitation and discrimination of sulphated glyocosaminoglycans by use of dimethylmethylene blue. Biochemica Biophysica Acta, v. 883, n. 2, p. 173-177, 1986. DOI: https://doi.org/10.1016/0304-4165(86)90306-5

HAUT, R.C.; LANCASTER, R.L.; DECAMP, C.E. Mechanical properties of the canine patellar tendon: some correlations with age and the content of collagen. Journal of Biomechanics, v. 25, n. 2, p. 163-173, 1992. DOI: https://doi.org/10.1016/0021-9290(92)90273-4

HEFFERAN, S.A.; BLAKER, C.L.; ASHTON, D.M.; LITTLE, C.B.; CLARKE, E.C. Structural Variations of Tendons: A Systematic Search and Narrative Review of Histological Differences Between Tendons, Tendon Regions, Sex, and Age. Journal Orthopaedic Research, v. 43, n. 5, p. 994-1011, 2025. DOI: https://doi.org/10.1002/jor.26060

KENT, M.J.C.; LIGHT, N.D.; BAILEY, A.J. Evidence for glucose-mediated covalent cross-linking of collagen after glycosilation in vitro. Biochemical Journal, v. 225, n. 8, p. 745-752, 1985. DOI: https://doi.org/10.1042/bj2250745

KER, R.F. Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). Journal Experimental Biology, v. 93, n. 3, p. 283-302, 1981. DOI: https://doi.org/10.1242/jeb.93.1.283

KER, R.F.; ALEXANDER, R.M.; BENNETT, M.B. Why are mammalian tendons so thick? Journal of Zoology (Londres), v. 216, n. 3, p. 309-324, 1988. DOI: https://doi.org/10.1111/j.1469-7998.1988.tb02432.x

KOOB, T.J.; VOGEL, K.G. Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. Journal Orthopaedic Research, v. 5, n. 10, p. 414–424, 1987. DOI: https://doi.org/10.1002/jor.1100050314

KORCARI, A.; SAMANTHA, J.; PRZYBELSKI, A.; GINGERY, A.; ALAYNA E.; LOISELLE, A.E. Impact of Aging on Tendon Homeostasis, Tendinopathy Development, and Impaired Healing. Connective Tissue Research, v. 64, n. 1, p. 1–13, 2023. DOI: https://doi.org/10.1080/03008207.2022.2102004

KOVANEN, V.; SUOMINEN, H.; PELTRONEN, L. Effects of aging and life-long physical training on collagen in slow and faster skeletal muscle in rats. Cell Tissue Research, v. 248, n. 3, p. 247-255, 1987. DOI: https://doi.org/10.1007/BF00218191

KWAN, K.Y.C.; NG, K.W.K.; RAO, Y.; ZHU, C.; QI, S.; TUAN, R.S.; KER, D.F.E.; WANG, D.M. Effect of Aging on Tendon Biology, Biomechanics and Implications for Treatment Approaches. International Journal of Molecular Sciences, v. 24, n. 20, e15183, 2023. DOI: https://doi.org/10.3390/ijms242015183

MAGNUSSON, S.P.; KJAER, M. The impact of loading, unloading, ageing and injury on the human tendon. Journal of Physiology, v. 597, n. 10, p. 1283–1298, 2019. DOI: https://doi.org/10.1113/JP275450

RIBITSCH, I.; GUELTEKIN, S.; KEITH, M.F.; MINICHMAIR, K.; PEHAM, C.; JENNER, F.; EGERBACHER, M. Age-related changes of tendon fibril micro-morphology and gene expression. Journal of Anatomy, v. 236, n. 7, p. 688–700, 2020. DOI: https://doi.org/10.1111/joa.13125

RIEMERSMA, D.J.; SCHAMHARDT, H.C. In vitro mechanical properties of equine tendons in relation to cross-sectional area and collagen content. Research in Veterinary Science, v. 39, n. 3, p. 263-270, 1985. DOI: https://doi.org/10.1016/S0034-5288(18)31711-9

SCOTT, A.; ASHE, M.C. Common tendinopathies in the upper and lower extremities. Current Sports Medicine Reports, v. 5, n. 3, p. 233-241, 2006. DOI: https://doi.org/10.1097/01.CSMR.0000306421.85919.9c

SIADAT, S.M.; ZAMBOULIS, D.E.; THORPE, C.T.; RUBERTI, J.W.; CONNIZZO, B.K. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. Advances in Experimental Medicine and Biology, v. 1348, n. 1, p. 45-103, 2021. DOI: https://doi.org/10.1007/978-3-030-80614-9_3

STAŃCZAKA, M.; KACPRZAKB, B.; GAWDAC, P. Tendon Cell Biology: Effect of Mechanical

Loading. Cellular Physiology and Biochemistry, v. 58, n. 7, p. 677-701, 2024. DOI: https://doi.org/10.33594/000000743

STAMMERS, M.; IVANOVA, I.M.; NIEWCZAS, I.S.; SEGONDS-PICHON, A.; STREETER, M.; SPIEGEL, D.A.; CLARK, J. Age-related changes in the physical properties, cross-linking, and glycation of collagen from mouse tail tendon. Journal Biological Chemistry, v. 295, n. 31, p.10562-10571, 2020. DOI: https://doi.org/10.1074/jbc.RA119.011031

STEGEMANN, H.; STALDER, K. Determination of hydroxyproline. Clinica Chimica Acta, v. 18, n. 4, p. 267–273, 1967. DOI: https://doi.org/10.1016/0009-8981(67)90167-2

VAILAS, A.C.; DELUNA, D.M.; LEWIS, L.L.; CURWIN, S.L., ROY, R.R.; ALFORD, E.K. Adaptation of bone and tendon to prolonged hindlimb suspension in rats. Journal Applied Physiology, v. 65, n. 4, p. 373-376, 1988. DOI: https://doi.org/10.1152/jappl.1988.65.1.373

VILARTA, R.; VIDAL, B.C. Anisotropic and biomechanical properties of tendons modified by exercise and denervation: Aggregation and macromolecular order in collagen bundles. Matrix Biology, v. 9, n.1, p. 55-61, 1989. DOI: https://doi.org/10.1016/S0934-8832(89)80019-8

XU, X.; HA, P.; YEN, E.; LI, C.; Zheng, Z. Small Leucine-Rich Proteoglycans in Tendon Wound Healing. Advances in Wound Care, v. 11, n. 4, p. 202-214, 2022. DOI: https://doi.org/10.1089/wound.2021.0069

WOO, S.L.Y.; GOMEZ, M.A.; RITTER, M.A.; GELBERMAN, R.H.; AKESON, W.H. The effects of exercise on the biomechanical and biochemical properties of swine digital flexor tendons. Journal of Biomechanics Engineering, v. 103, n. 1, p. 51-56, 1981. DOI: https://doi.org/10.1115/1.3138246

WOO, S.L.Y.; GOMEZ, M.A.; WOO, Y.K.; AKESON, W.H. Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology, v. 19, n.4, p. 397-408, 1982. DOI: https://doi.org/10.3233/BIR-1982-19302

Published

2025-09-30

How to Cite

Esquisatto, M. A. M., Aro, A. A. de, Pimentel , E. R., & Gomes, L. (2025). Analysis of the biomechanical and biochemical properties of two rat tendons with aging. Revista Ensaios Pioneiros, 9(1). https://doi.org/10.24933/rep.v9i1.480

Issue

Section

BIOLOGY AND HEALTH SCIENCES