Integrando farmacologia de rede e docagem molecular para avaliar o potencial terapêutico da tangeritina contra o meduloblastoma

Authors

DOI:

https://doi.org/10.24933/rep.v8i1.463

Keywords:

Flavones, Tangeretin, Medulloblastoma, Network Pharmacology, Bioinformatics

Abstract

Tangeretin is an antioxidant flavone with anticancer effects capable of inhibiting the development and progression of cancer cells. Due to these properties and the statistical relevance of cancer in the central nervous system, with 11,490 cases per 100,000 inhabitants between 2023 and 2025, the study of natural compounds applied to brain tumors emerges as a promising approach. Due to the challenges in early diagnosis and treatment, with metastasis being the leading cause of mortality, medulloblastoma, primarily pediatric, requires further research focused on developing new therapies that could reduce metastasis cases and the side effects of conventional therapies. Protein-protein interaction (PPI) network analyses revealed therapeutic targets such as EGFR, AKT1, SRC, GSK3B, PARP1, MMP9, PTGS2, MCL1, ABCB1. After clustering, molecular docking of the SRC gene confirmed that tangeretin presented a satisfactory binding energy of -6.33 kcal/mol and an RMSD of 0, indicating high affinity and therapeutic potential. Functional enrichment of the signaling pathways indicated the relevance of the EGFR-TKI, PI3K-Akt, Chemical Carcinogenesis - ROS, Estrogen Signaling, Ras Signaling, MAPK Signaling, and FoxO Signaling pathways. The modulation of these pathways by tangeretin suggests a positive therapeutic approach in reducing carcinogenesis progression and improving the response to chemotherapy.

Downloads

Download data is not yet available.

References

ALENCAR, W. L. M. et al. Interactions of Co, Cu, and non-metal phthalocyanines with external structures of SARS-CoV-2 using docking and molecular dynamics. Scientific Reports, [s. l.], v. 12, n. 1, p. 3316, 2022. Disponível em: https://www.nature.com/articles/s41598-022-07396-w. DOI: https://doi.org/10.1038/s41598-022-08312-y

AMBERGER, J. et al. McKusick’s Online Mendelian Inheritance in Man (OMIM(R)). Nucleic Acids Research, [s. l.], v. 37, n. Database, p. D793–D796, 2009. Disponível em: https://academic.oup.com/nar/article/37/suppl_1/D793/1003813?login=false. DOI: https://doi.org/10.1093/nar/gkn665

ARAFA, E.-S. A.; SHURRAB, N. T.; BUABEID, M. A. Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways. Advances in Pharmacological and Pharmaceutical Sciences, [s. l.], v. 2021, p. 4709818, 2021. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1155/2021/4709818. DOI: https://doi.org/10.1155/2021/4709818

ASHBURNER, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics, [s. l.], v. 25, n. 1, p. 25–29, 2000. Disponível em: https://www.nature.com/articles/ng0500_25. DOI: https://doi.org/10.1038/75556

BELCHER, S. M. et al. Estrogen and soy isoflavonoids decrease sensitivity of medulloblastoma and central nervous system primitive neuroectodermal tumor cells to chemotherapeutic cytotoxicity. BMC Pharmacology and Toxicology, [s. l.], v. 18, n. 1, p. 63, 2017. Disponível em: https://link.springer.com/article/10.1186/s40360-017-0160-7. DOI: https://doi.org/10.1186/s40360-017-0160-7

BERMAN, H. M. The Protein Data Bank. Nucleic Acids Research, [s. l.], v. 28, n. 1, p. 235–242, 2000. Disponível em: https://academic.oup.com/nar/article/45/D1/D271/2333880?login=false. DOI: https://doi.org/10.1093/nar/28.1.235

BORGES, A. L. A. UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE BIOTECNOLOGIA CURSO BIOTECNOLOGIA. [s. l.], 2019. Disponível em: https://repositorio.ufu.br/handle/123456789/26091.

CASOTTI, M. C. et al. Construindo redes de interação proteína-proteína por curadoria manual. In: BASTOS, L. L. et al. BIOINFO #02 - Revista Brasileira de Bioinformática e Biologia Computacional. 2. ed. [S. l.]: Alfahelix, 2022. p. 114–161. Disponível em: https://bioinfo.com.br/construindo-redes-de-interacao-proteina-proteina-por-curadoria-manual/. Acesso em: 25 set. 2024. DOI: https://doi.org/10.51780/978-65-992753-5-7-09

CHANG, F. et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, [s. l.], v. 17, n. 3, p. 590–603, 2003. Disponível em: https://www.nature.com/articles/2402824. DOI: https://doi.org/10.1038/sj.leu.2402824

CHHAJED, S. et al. Structure Based Design and In-Silico Molecular Docking Analysis of Some Novel Benzimidazoles. [s. l.], 2010.

COOKMAN, C. J.; BELCHER, S. M. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology, [s. l.], v. 156, n. 7, p. 2395–2408, 2015. Disponível em: https://academic.oup.com/endo/article-abstract/156/7/2395/2422833. DOI: https://doi.org/10.1210/en.2015-1141

CURRAN, E. K. et al. Gender affects survival for medulloblastoma only in older children and adults: A study from the surveillance epidemiology and end results registry. Pediatric Blood & Cancer, [s. l.], v. 52, n. 1, p. 60–64, 2009. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/pbc.21832. DOI: https://doi.org/10.1002/pbc.21832

DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, [s. l.], v. 7, n. 1, p. 42717, 2017. Disponível em: https://www.nature.com/articles/srep42717. DOI: https://doi.org/10.1038/srep42717

DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, [s. l.], v. 47, n. W1, p. W357–W364, 2019. Disponível em: https://academic.oup.com/nar/article/47/W1/W357/5491750?login=false. DOI: https://doi.org/10.1093/nar/gkz382

DAMARE, R.; ENGLE, K.; KUMAR, G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytotherapy Research, [s. l.], v. 38, n. 5, p. 2406–2447, 2024. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/ptr.8166. DOI: https://doi.org/10.1002/ptr.8166

DRESSLER, E. V. et al. Demographics, patterns of care, and survival in pediatric medulloblastoma. Journal of Neuro-Oncology, [s. l.], v. 132, n. 3, p. 497–506, 2017. Disponível em: https://link.springer.com/article/10.1007/s11060-017-2400-5. DOI: https://doi.org/10.1007/s11060-017-2400-5

FARHAN, M. et al. Role of FOXO Transcription Factors in Cancer Metabolism and Angiogenesis. Cells, [s. l.], v. 9, n. 7, p. 1586, 2020. Disponível em: https://www.mdpi.com/2073-4409/9/7/1586. DOI: https://doi.org/10.3390/cells9071586

GE, S. X.; JUNG, D.; YAO, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, [s. l.], v. 36, n. 8, p. 2628–2629, 2020. Disponível em: https://academic.oup.com/bioinformatics/article/36/8/2628/5688742. DOI: https://doi.org/10.1093/bioinformatics/btz931

GUERRA, J. V. S. et al. KVFinder-web: a web-based application for detecting and characterizing biomolecular cavities. Nucleic Acids Research, [s. l.], v. 51, n. W1, p. W289–W297, 2023. Disponível em: https://academic.oup.com/nar/article/51/W1/W289/7151338?login=false. DOI: https://doi.org/10.1093/nar/gkad324

HAYES, J. D.; DINKOVA-KOSTOVA, A. T.; TEW, K. D. Oxidative Stress in Cancer. Cancer Cell, [s. l.], v. 38, n. 2, p. 167–197, 2020. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC7439808/. DOI: https://doi.org/10.1016/j.ccell.2020.06.001

HUANG, Z. et al. Global metabolomics study on the pathogenesis of pediatric medulloblastoma via UPLC- Q/E-MS/MS. PLOS ONE, [s. l.], v. 18, n. 6, p. e0287121, 2023. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287121. DOI: https://doi.org/10.1371/journal.pone.0287121

HUANG, D. W.; SHERMAN, B. T.; LEMPICKI, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, [s. l.], v. 37, n. 1, p. 1–13, 2009a. Disponível em: https://academic.oup.com/nar/article/37/1/1/1026684. DOI: https://doi.org/10.1093/nar/gkn923

HUANG, D. W.; SHERMAN, B. T.; LEMPICKI, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, [s. l.], v. 4, n. 1, p. 44–57, 2009b. Disponível em: https://www.nature.com/articles/nprot.2008.211. DOI: https://doi.org/10.1038/nprot.2008.211

IKEGAMI, S. et al. An ultrasensitive assay revealed age‐related changes in serum oestradiol at low concentrations in both sexes from infancy to puberty. Clinical Endocrinology, [s. l.], v. 55, n. 6, p. 789–795, 2001. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2265.2001.01416.x. DOI: https://doi.org/10.1046/j.1365-2265.2001.01416.x

JÚNIOR, E. G. S. S.; DR. ARLAN, A. D. S. G. ESTUDO POR DOCAGEM MOLECULAR DE INIBIDORES DA ENZIMA GSK-3β: UMA PROPOSTA PARA O TRATAMENTO DO TRANSTORNO BIPOLAR. Revista Ifes Ciência, [s. l.], v. 5, n. 1, p. 243–256, 2019. DOI: 10.36524/ric.v5i1.289. Disponível em: https://ojs.ifes.edu.br/index.php/ric/article/view/289. DOI: https://doi.org/10.36524/ric.v5i1.289

KANEHISA, M. et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, [s. l.], v. 51, n. D1, p. D587–D592, 2023. Disponível em: https://academic.oup.com/nar/article/51/D1/D587/6775388. DOI: https://doi.org/10.1093/nar/gkac963

KHAN, A. U. et al. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives. European Journal of Medicinal Chemistry Reports, [s. l.], v. 3, p. 100010, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S2772417421000108. DOI: https://doi.org/10.1016/j.ejmcr.2021.100010

KIM, S. et al. PubChem 2023 update. Nucleic Acids Research, [s. l.], v. 51, n. D1, p. D1373–D1380, 2023. Disponível em: https://academic.oup.com/nar/article/51/D1/D1373/6777787?login=false. DOI: https://doi.org/10.1093/nar/gkac956

LIU, X. et al. Medulloblastoma: Molecular understanding, treatment evolution, and new developments. Pharmacology & Therapeutics, [s. l.], v. 210, p. 107516, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0163725820300449?via%3Dihub. DOI: https://doi.org/10.1016/j.pharmthera.2020.107516

MACDONALD, T. J. et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nature Genetics, [s. l.], v. 29, n. 2, p. 143–152, 2001. Disponível em: https://www.nature.com/articles/ng731z. DOI: https://doi.org/10.1038/ng731

MENDONÇA, D. V. C. Isobruceína B e neosergeolida: modelagem em nível de DFT e estudos de docking molecular com Dihidrofolato Redutase de Plasmodium vivax. Universidade Federal Do Amazonas Instituto De Ciencias Exatas Departamento De Química. [s. l.], 2020. Disponível em: https://tede.ufam.edu.br/handle/tede/7754.

MENG, E. C. et al. UCSF CHIMERAX : Tools for structure building and analysis. Protein Science, [s. l.], v. 32, n. 11, p. e4792, 2023. DOI: https://doi.org/10.1002/pro.4792

MORRIS, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, [s. l.], v. 19, n. 14, p. 1639–1662, 1998. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-B. DOI: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

PANCHE, A. N.; DIWAN, A. D.; CHANDRA, S. R. Flavonoids: an overview. Journal of Nutritional Science, [s. l.], v. 5, p. e47, 2016. Disponível em: https://www.cambridge.org/core/journals/journal-of-nutritional-science/article/flavonoids-an-overview/C0E91D3851345CEF4746B10406908F52. DOI: https://doi.org/10.1017/jns.2016.41

PIERONI, M. et al. MD–Ligand–Receptor: A High-Performance Computing Tool for Characterizing Ligand–Receptor Binding Interactions in Molecular Dynamics Trajectories. International Journal of Molecular Sciences, [s. l.], v. 24, n. 14, p. 11671, 2023. Disponível em: https://www.mdpi.com/1422-0067/24/14/11671. DOI: https://doi.org/10.3390/ijms241411671

RASCIO, F. et al. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers, [s. l.], v. 13, n. 16, p. 3949, 2021. Disponível em: https://www.mdpi.com/2072-6694/13/16/3949. DOI: https://doi.org/10.3390/cancers13163949

RODRÍGUEZ-GARCÍA, C.; SÁNCHEZ-QUESADA, C.; GAFORIO, J. J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants, [s. l.], v. 8, n. 5, p. 137, 2019. Disponível em: https://www.mdpi.com/2076-3921/8/5/137. DOI: https://doi.org/10.3390/antiox8050137

SANNER, M. F. Python: a programming language for software integration and development. Journal of Molecular Graphics & Modelling, [s. l.], v. 17, n. 1, p. 57–61, 1999. Disponível em: https://www.academia.edu/download/25505223/10.1.1.35.6459.pdf.

SANTOS, M. D. O. et al. Estimativa de Incidência de Câncer no Brasil, 2023-2025. Revista Brasileira de Cancerologia, [s. l.], v. 69, n. 1, 2023. Disponível em: https://rbc.inca.gov.br/index.php/revista/article/view/3700. Acesso em: 20 set. 2024.

SHANNON, P. et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, [s. l.], v. 13, n. 11, p. 2498–2504, 2003. Disponível em: https://genome.cshlp.org/content/13/11/2498.short. DOI: https://doi.org/10.1101/gr.1239303

STELZER, G. et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, [s. l.], v. 54, n. 1, 2016. Disponível em: https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/cpbi.5. Acesso em: 25 set. 2024. DOI: https://doi.org/10.1002/cpbi.5

SYSTÈMES, D. BIOVIA Discovery Studio. [S. l.], 2024. Disponível em: https://discover.3ds.com/discovery-studio-visualizer-download. Acesso em: 29 out. 2024.

SZKLARCZYK, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, [s. l.], v. 51, n. D1, p. D638–D646, 2023. Disponível em: https://academic.oup.com/nar/article/51/D1/D638/6825349?login=false. DOI: https://doi.org/10.1093/nar/gkac1000

WARIS, G.; AHSAN, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of Carcinogenesis, [s. l.], v. 5, p. 14, 2006. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC1479806/. DOI: https://doi.org/10.1186/1477-3163-5-14

WHIRL-CARRILLO, M. et al. Pharmacogenomics Knowledge for Personalized Medicine. Clinical Pharmacology & Therapeutics, [s. l.], v. 92, n. 4, p. 414–417, 2012. Disponível em: https://ascpt.onlinelibrary.wiley.com/doi/10.1038/clpt.2012.96. DOI: https://doi.org/10.1038/clpt.2012.96

ZANNONI, G. F. et al. Sexual dimorphism in medulloblastoma features. Histopathology, [s. l.], v. 68, n. 4, p. 541–548, 2016. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1111/his.12770. DOI: https://doi.org/10.1111/his.12770

Published

2024-12-16

How to Cite

Clemente de Melo, N., & de Carvalho, L. M. (2024). Integrando farmacologia de rede e docagem molecular para avaliar o potencial terapêutico da tangeritina contra o meduloblastoma. Revista Ensaios Pioneiros, 8(1). https://doi.org/10.24933/rep.v8i1.463

Issue

Section

BIOLOGY AND HEALTH SCIENCES