ICT with application of the finite difference method for elastic line analysis in beams with different boundary conditions and subject to variable load

Authors

  • Marcio Rodrigues Sabino (19)98804-2681

DOI:

https://doi.org/10.24933/rep.v9i1.421

Keywords:

elastic line equation, finite differences, ICT

Abstract

Predicting beam deformation is essential for the safe design of structures. Several factors influence this deformation, such as geometry, material, boundary conditions and loads. The main objective of this work was to model the elastic line equations for four cases of beams with different types of loading using the numerical method of finite differences (FDM) and analyze the results by comparing them with the analytical solutions. As a secondary objective, develop a digital Information and Communication Technology (ICT) tool for beam analysis. The differential equations of the elastic line were modeled, solved analytically and numerically by FDM. An educational ICT was developed in the Python programming language and the comparison between numerical and analytical results was carried out through analysis of the maximum absolute errors. Error analysis demonstrated agreement between analytical and numerical results, validating its applicability in different scenarios. ICT declared itself to be an excellent digital educational tool capable of making the process more dynamic, interactive, personalized, robust and reliable in results.

Downloads

Download data is not yet available.

References

ALVES, Lucas Máximo. Introdução aos métodos aproximados em Engenharia: Álgebra Linear, Geometria Analítica, Cálculo e Equações Diferenciais, Curitiba. 2007. 287 f. - Universidade Federal do Paraná Setor de tecnologia/setor de ciências exatas Departamento de engenharia civil/ Departamento de matemática, Curitiba, 2007.

APRENDER ENGENHARIA. Vigas Online. 2018. Disponível em: https://www.aprenderengenharia.com.br/viga-online. Acesso em: 10 ago. 2022.

BEER, F. P.; JR, E. R. J.; DEWOLF, J. T.; MAZUREK, D. F. Mecânica dos Materiais. 5. ed. – Porto Alegre: AMGH, 2011.

CHAPRA, S. C. Métodos numéricos para engenharia. 5 Ed. McGrw-Hill, 2008.

FAIRES, J. Douglas; BURDEN, Richard L.; Análise Numérica. 11. ed. Säo Paulo: Editora Cengage, 2008.

HIBBELER, R. C.. Estática: mecânica para engenharia. 12. ed. São Paulo: Pearson Prentice Hall, 2011.

LÉVY, P. As tecnologias da inteligência: o futuro do pensamento da era da informática. 34. ed. 1998.

OLIVEIRA NETO, Marcílio Francisco de; CAGNIN, Renato Luciano; CANCIGLIERI, Larissa de Oliveira Figueira. Programação de computadores I: uma abordagem com Python. 1. ed. Araras, SP: Fundação Hermínio Ometto-FHO/CEMAD, 2020. 125 p., il, 3.219 KB. ISBN 978-65-87752-12-9.

OLIVEIRA NETO, Marcílio Francisco de; CAGNIN, Renato Luciano; CANCIGLIERI, Larissa de Oliveira Figueira. Programação de computadores II: uma abordagem com Phyton. 1. ed. Araras, SP: Fundação Hermínio Ometto-FHO/CEMAD, 2021. 79p. (1.597 Kb), il. ISBN 978-65-87752-47-1.

RUGGIERO, M.A.G.; LOPES, V.L.R. Cálculo Numérico: Aspectos Teóricos e Computacionais. 2a Ed. São Paulo: Makron Books, 1988.

SABINO, Marcio Rodrigues. Métodos Numéricos para Engenharia. 1. ed. Araras, SP: Fundação Hermínio Ometto-FHO/CEMAD, 2023. 414p. (10.690 Kb), il. e-book. ISBN 978-65-6014-039-4.

SILVA, Selênio Feio da; SOARES, Alexandre Andrade Brandão. O MÉTODO DAS DIFERENÇAS FINITAS APLICADO À TEORIA DAS VIGAS. Revista Traços, Belém, v. 13, n. 27, p.9-23, jun. 2011.

SOARES, Alexandre Andrade Brandão – O método das diferenças finitas aplicado à teoria das vigas, Belém. 2010. 142 f. – Universidade da Amazônia, Belém, 2010.

Published

2025-09-30

How to Cite

Rodrigues Sabino, M. (2025). ICT with application of the finite difference method for elastic line analysis in beams with different boundary conditions and subject to variable load. Revista Ensaios Pioneiros, 9(1). https://doi.org/10.24933/rep.v9i1.421

Issue

Section

EXACT SCIENCES, ENGINEERING and TECHNOLOGIES